Chapter 7
Human Health and Environmental Toxicology

Overview of Chapter 7

- Human Health
 - Health issues in developed countries
 - Health issues in developing countries
- Environmental Pollution and Disease
 - Environmental Contaminants
 - Endocrine Disrupters
- Determining Health Effects of Pollutants
- Ecotoxicology
- Risk Assessment

Human Health

- Two indicators of human health
 - Life expectancy- how long people are expected to live
 - Infant mortality- how many children die before age of 1 year

Health Issues in Highly Developed Countries

- By many measures- health is good in these countries
 - Great sanitation
 - Few childhood diseases
- Average life expectancy
 - Men = 75 years
 - Women = 80 years
- Leading causes of death in US
 - Cardiovascular disease
 - Cancer
 - Chronic Obstructive Pulmonary Disease (of the lungs)

Health Issue in Highly Developed Countries

- Premature deaths caused by lifestyle
• Poor diet
• Lack of exercise
• Smoking

- **Obesity is big problem**
 - Body Mass Index (BMI)
 - \(\frac{\text{Weight} \times 740}{(\text{height (in)})^2} \)
 - < 18.5 is underweight
 - 18.5-24.9 is healthy weight
 - 25-29 is overweight
 - > 30 is obese

Health Issues in Developing Countries

- **Biggest problems**
 - Malnutrition, unsafe water, poor sanitation

- **Life Expectancy**
 - Overall is 65 years
 - Very poorest developing countries = 45 years
 - Most of these countries have high AIDS epidemics

- **Childhood mortality is high (18% of deaths)**
 - Diarrheal diseases
 - Malnutrition
 - Malaria
 - AIDS/HIV

Emerging and Reemerging Diseases

- **Emerging Disease** - not previously observed in humans
 - Usually jumps from animal host
 - Ex: AIDS, lime disease, West Nile Virus

Reasons for Emergence/Reemergence

- Evolution of disease so it can move to human host
- Evolution of antibiotic resistance in disease
- Urbanization and overcrowding
- Increased pop. of elderly- susceptible to disease
- Pollution and environmental degradation
- Growth in international travel and commerce
Poverty and social inequality

Environmental Pollution and Disease

- Often difficult to link pollutants to their effects on people
 - Persistence
 - Bioaccumulation
 - Biomagnification

Persistence

- A characteristic of certain chemicals that are extremely stable and may take many years to be broken down into simpler forms by natural processes
 - Synthetic chemicals (those not found in nature)
 - Ex: DDT
- Natural decomposers (bacteria) have not evolved a way to break it down

Bioaccumulation

- The buildup of a persistent toxic substance in an organism's body, often in fatty tissues
 - Synthetic chemical do not metabolize well
 - They remain in the body for extended periods of time

Biomagnification

- The increased concentration of toxic chemicals in the tissues of organisms that are at higher levels in food webs
- Diagram is example of biomagnification of DDT

Endocrine Disrupters

- A chemical that mimics or interferes with the actions of the endocrine system in humans and wildlife
 - i.e. It effects the ability of the hormones in the organisms to function properly
- Examples include:
 - PCBs, Dioxins
• Heavy metals - lead and mercury
• DDT

- Animals exposed to these chemicals have altered reproductive development and are often sterile

Endocrine Disrupters

- Case Study: 1980 chemical spill into Lake Apopka, FL
 - Male alligators began to exhibit low testosterone levels and high estrogen levels

Endocrine Disrupters and Humans

- Infertility and hormonally related cancers are increasing
 - Breast cancer and testicular cancer

- Phthalates have been implicated as potential endocrine disrupters
 - Common ingredient in: cosmetics, fragrances, nail polish, medication, toys, food packaging

- Cannot make a link between endocrine disrupters and human illness
 - Too few studies have been performed

Determining Health Effects of Pollutants

- Toxicology is the study of the effect of toxicants on the human body
 - Toxicant- chemical with adverse human health effects

- Acute toxicity
 - Adverse effects occur within a short period after exposure to toxin

- Chronic toxicity
 - Adverse effects occur some time after exposure, or after prolonged exposure to toxin
 - Symptoms often mimic other diseases- hard to assess source

Toxicity

- Toxicity measured by dose and response
 - Dose: amount that enters that body of an exposed organism
 - Response: the amount of damage caused by a specific dose
- **LD$_{50}$**
 - Lethal dose to 50% of the test organisms
 - Smaller the LD$_{50}$, the more lethal the chemical
 - Determined for all new synthetic chemicals

Toxicity

- **ED$_{50}$**
 - Effective dose to 50% of the test organisms
 - ED$_{50}$ causes 50% of the population to exhibit whatever effect is under study

- **Dose-Response Curve**
 - Illustrates the effect of different doses on a population
 - Threshold Level
 - Maximum dose with no measurable effects

Children and Chemical Exposure

- Children more susceptible to chemicals
 - Weigh less than adults
 - Bodies are still developing
 - Play on floors and lawns
 - Exposed to cleaning products and pesticides
 - Put things into their mouths

- **Diagram**
 - Children in foothills not exposed to pesticides
 - Children in valley were exposed

Identifying Cancer Causing Substances

- **Toxicologist**
 - Dose rats with varying levels of chemicals to see if they develop cancer
 - Difficult to extrapolate results to humans

- **Epidemiologists**
 - Look at historical exposure of groups of humans
 - See if exposed group have increased cancer rate
Chemical Mixtures

- Most studies look at one chemical, but humans tend to be exposed to chemical mixtures
 - Ex: automobile exhaust
- Chemical Mixtures interact by
 - Additivity
 - Synergy
 - Antagonism
- These studies are expensive and take a while to complete

Chemical Testing

Ecotoxicology

- Dilution Paradigm is not valid
 - “Dilution is the solution to pollution”
- Boomerang Paradigm is accepted
 - “What you throw away can come back and hurt you”
- Ecotoxicology
 - The study of contaminants in the biosphere and their harmful effects on ecosystems
 - Helps policy makers determine costs and benefits of industrial and technological “advances”
 - And how they often adversely effect ecosystems

Case Study: The Ocean

- Land based nutrient and pollution runoff into ocean is affecting microorganisms
- Ex: Red Tide
 - Red pigmented poisonous algal blooms
 - Toxins kill off fish and make humans sick

Risk Assessment

- Risk- probability that a particular adverse effect will result from some exposure or condition
We assess risk daily with four steps
 • Hazard identification
 • Dose response assessment
 • Exposure assessment
 • Risk characterization

Risk Assessment

Ecological Risk Assessment

Difficult to assess because effect occur at wide range of scales
 • Individual plants and animals
 • Ecological communities over wide regions

Human-induced environmental stressors also range greatly
 • Good to bad
 • Acceptable to unacceptable

There is a need to quantify risks to the environment

 Case Study on Ecological Risk Assessment
 • Results in decrease in fish, algal blooms

Ecol. Risk Assessment
 • Used to help government and locals set priorities to manage and protect ecosystem