Instructor: Eric Cornish

Course Description: Students will learn fundamentals of building computer based 3D models for Film, TV, and Video Gaming applications. Students will also learn technical and conceptual skills that will enable them to creatively express and develop their personal ideas and feelings. The students will also acquire a fundamental understanding of 3D modeling, texture mapping and lighting from concept to final product. Lab fee.
Prerequisite(s) ART2600C or GRA2577C or VIC1202.

Course Purpose: These courses will introduce students to the fundamentals of 3D modeling using the MAYA animation software. Technical and conceptual skills will enable each student to creatively express and develop their personal ideas and feelings.

Course Requirements: All students will be responsible for:

1. **Notebook & sketchbook** with pencil (soft lead or charcoal) and pen to class.
 - The Notebook will be used to keep class notes, handouts and resource materials.
 - The Sketchbook will be used to work on daily sketches and the homework assignments.

2. A 1GB Flash drive and/or Pack of blank CD-R/RW's to save student work

 Quizzes will be given at the discretion of the instructor.
 *Daily classroom work will be monitored and graded.

Text books:

Objectives:

(1) Through the critique process, students will use analytical vocabulary to discuss processes, formulate opinions and describe the roll of 3D graphics and animation in today’s high tech industry.

(2) Students will also recognize and examine 3D graphics and animation produced with several different software applications.

(3) Students will begin to build a portfolio of 3D characters, products and scenes exhibiting the effective use and implementation of the software. The students will acquire a fundamental understanding of modeling, texture mapping and lighting from concept to final product. The students will build and develop each project with fundamental elements of art and the principles of design.

(4) Finally, students will express personal ideas and feelings through the use of creative 3D graphics and models.
(5) Students will learn to research & develop detailed conceptual drawings. This discipline will reinforce the creative process. This will be kept in a sketchbook.
- (9)- Thumbnail sketches **rough & (2)**- 5X7 Sketches **more developed**
- (1) Front, (1) Side, (1) Top, & (1) Isometric Drawings **tight** pencils
- Tight pencils will be inked by hand, scanned in and colored in Photoshop.
- a journal to write down notes and keep track of the research gathered during
the creative **process**. (A list of books, magazines, websites, etc...)
- Final 3d model turnarounds, lighting, texturing.

Course Competencies

<table>
<thead>
<tr>
<th>Competency 1: The student will demonstrate proficiency in use of the computer animation window interface by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identifying and defining basic window tools and palettes</td>
</tr>
<tr>
<td>• Customizing interface windows and tool preferences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Competency 2: The student will demonstrate proficiency in creating 3d Polygon models by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Constructing 3D models using 2D image planes as a reference.</td>
</tr>
<tr>
<td>• Creating more complex using 3D primitives as the basis.</td>
</tr>
<tr>
<td>• Working with the components of a polygon mesh (faces, edges, and vertices).</td>
</tr>
<tr>
<td>• Selecting the faces, edges, and vertices of polygonal meshes.</td>
</tr>
<tr>
<td>• Combining separate meshes into one mesh.</td>
</tr>
<tr>
<td>• Using “Snap to Grid.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Competency 3: The student will demonstrate proficiency in creating 3d Creating Non Uniform Rational B-Spline (NURBS) Models by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Creating a NURBS curve using the control vertices (CV) creation technique.</td>
</tr>
<tr>
<td>• Determining the start and end points for a NURBS curve and its direction.</td>
</tr>
<tr>
<td>• Increasing the surface subdivisions on a NURBS surface.</td>
</tr>
<tr>
<td>• Creating a NURBS surface using the Loft tool</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Competency 4: The student will demonstrate proficiency in creating 3d Subdivision models by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Converting a polygon surface to a subdivision surface.</td>
</tr>
<tr>
<td>• Splitting subdivision faces to create areas for more detail in a model.</td>
</tr>
<tr>
<td>• Changing the Display Level when working in Standard Mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Competency 5: The student will demonstrate proficiency in Rendering 3d scenes by:</th>
</tr>
</thead>
</table>
• Assigning shading materials to surfaces in the scene
• Editing the color of shading materials
• Applying basic texturing techniques
• Manipulating lights, shadows, and camera angles.
• Rendering a scene.

Attendance Policy: Students are required to attend all classes and to **be on time**. Consistent tardiness will result in the deduction of grade points. Every 3 tardy will count as an unexcused absence. After 3 unexcused absences the student may be dropped from the class. In the case of **make up work** the student must discuss his/her situation with the instructor to determine a resolution.

Class Rules: The Students need to be **respectful of each other, the computer Lab, materials, as well as the teacher.** By obeying these rules, the students will be better prepared to enter the workplace and succeed there.

* **The pirating of software programs is illegal; please do not ask your professor for a free copy!!!**

1. Students are encouraged to take part in lab time in order to practice and finish projects.
2. Students are to respect the rights of teachers and all other class members.
3. Students are not to eat, drink, or chew any candy, food, gum, or drink beverages during class time or once in the Computer Lab.
4. All computers are to be shut down at the end of every class session. All work areas are to be kept clean and orderly.
5. Students are to use The Internet in an appropriate manner (educational material only).

Grading Scale: MDCC

100 - 90 = A
89 - 80 = B
79 - 70 = C
69 - 60 = D
59 - 0 = F

Class Projects……………………………………. 65%
Final Quiz ………………………………………… 15%
Quizzes ………………………………………….. 10%
Attendance ……………………………………… 10%

(Students must complete Final or results in an automatic failure of the course)

Course Outline

Week 1
Maya Interface & basics
Maya Help files
- Modeling the Temple

Week 2
Understanding Maya
Learning Maya 2008 book – pg. 13
- Quiz 1

Week 3
Learning Maya 2008 book – pg. 39
Project 01_Lesson 01
Working with Primitives

Week 4
Learning Maya 2008 book – pg. 63
Project 01_Lesson 02
Adding Details

Week 5
Learning Maya 2008 book – pg. 75
Project 01_Lesson 03
Shaders and Textures
- Quiz 2

Week 6
Learning Maya 2008 book – pg. 111
Project 01_Lesson 03
Working with Maya

Week 7
Learning Maya 2008 book – pg. 423
Project 03_Lesson 21
Rendering
Rendering with Layers - occlusion render

Week 8
(Extrude face/ Booleans/ working with polygon tools)
Maya Help files
- Polygon Modeling- helmet
- Quiz 3

Week 9
Learning Maya 2008 book – pg. 173
Project 02_Lesson 07
Polygon Modeling

Week 10
Learning Maya 2008 book – pg. 205
Project 02_Lesson 08
Polygon Texturing
- Quiz 4

Week 11
Project 03_Lesson 15
NURBS Modeling

Week 12
Learning Maya 2008 book – pg. 361
Project 03_Lesson 16
NURBS Texturing
- Quiz 5

Week 13
Learning Maya 2008 book – pg. 383
Project 03_Lesson 18
Paint Effects

Week 14
Learning Maya 2008 book – pg. 409
Project 03_Lesson 20
Lights and Effects
Week 15
Learning Maya 2008 book – pg. 409
Project 04_Lesson 22
SubD Modeling

Week 16
Learning Maya 2008 book – pg. 409
Project 04_Lesson 23
SubD Texturing

- **Final Quiz (combination of all the quizzes)**

Students must complete Final or
Grade results in an automatic failure of the course.