Exam 4 will be on 07/23/12 and covers the following sections: 5.4, 5.5, 5.6, 6.2, 6.4.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Find the area of the shaded region.

1) \(y = x^2 - 4x + 3 \)
 \[y = x - 1 \]
 \[y = x^2 \]
 \[y = -1 \]

2) \(y = 2x^2 + x - 6 \)
 \(y = x^2 - 4 \)

3) \(y = \sqrt{2x} \)
 \(y = x - 4 \)
4) \[y = x^4 - 32 \]

Find the area enclosed by the given curves.
5) \[y = x^3, \ y = 4x \]
6) \[y = 2x - x^2, \ y = 2x - 4 \]
7) \[y = x, \ y = x^2 \]
8) \[y = \frac{1}{2} x^2, \ y = -x^2 + 6 \]

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

9) Find the area bounded by the curves \(y = x^2 - 2x \) and \(y = 3 \).
 A) 10 \quad B) \frac{32}{3} = 10\frac{2}{3} \quad C) 9 \quad D) \frac{20}{3} = 6\frac{2}{3}

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

For the problems below, find each area bounded by the curves.
10) \[y = 2x^2 - 5x - 8 \]
 \[y = x + 12 \]

11) \[y = x^3 \]
 \[y = 2x \]

12) What is the consumers’ surplus for the demand curve \(p = 5 - \frac{x}{20} \) at the sales level \(x = 60 \)?

13) Find the producers’ surplus for the supply curve \(p = 0.02x + 7 \) at \(x = 100 \).

14) Find the producers’ surplus for the supply curve \(p = 4 + \frac{1}{2}\sqrt{x} \) at \(x = 144 \).
Find the consumer's surplus for the following demand function at the given point.

15) \(D(x) = (x - 3)^2; x = \frac{3}{2} \)

16) Find the consumers' surplus at a price level of \(p = $7 \) for the price-demand equation \(p = D(x) = 25 - 0.4x \).

Find the producer's surplus for the following supply function at the given point.

17) \(S(x) = x^2 + 5; x = 1 \)

Solve the problem.

18) Find the consumers' surplus and producers' surplus for \(p = D(x) = 71 - \frac{1}{10}x \) and \(p = S(x) = 35 + \frac{1}{20}x \).

19) Find the producers' surplus at a price level of \(p = $30 \) for the price-supply equation \(p = S(x) = 14 + 0.0004x^2 \).

Solve the problem.

20) Find the equilibrium price if the price-demand equation is \(p = D(x) = 23 - \frac{1}{20}x \), and the price-supply equation is \(p = S(x) = 8 + \frac{1}{8,000}x^2 \).

21) Find the equilibrium quantity if the price-demand equation is \(p = D(x) = 23 - \frac{1}{20}x \), and the price-supply equation is \(p = S(x) = 8 + \frac{1}{8,000}x^2 \).

22) Find the equilibrium price and quantity, producers' surplus for \(p = D(x) = 71 - \frac{1}{10}x \) and \(p = S(x) = 35 + \frac{1}{20}x \).

Solve the differential equation.

23) \(\frac{dy}{dx} = e^{6x} - 6y \)

24) \(\frac{dy}{dx} = \frac{5y^2}{x} \)

25) \(\frac{dy}{dx} = 12\sqrt{xy} \)
26) \(x^2 \frac{dy}{dx} = 2y\)
27) \(\frac{dy}{dx} = 4x^3e^{-y}\)
28) \(\frac{dy}{dx} = 3x^2\sqrt{y - 1}\)

Find a general solution for the differential equation.

29) \(y' = \frac{2y^2}{x}\)
30) \(y' = 18\sqrt{xy}\)
31) \(x^2y' = 2y\)
32) \(y' = 5x^4e^{-y}\)
33) \(\frac{dy}{dx} = 7x^6\sqrt{y - 1}\)

Solve the initial-value problem.

34) \(2y' - 4xy = 8x; \ y(0) = 24\)
35) \(\frac{dy}{dx} - xy - x = 0; \ y(1) = 10\)
36) \(y' = e^x - y; \ y(0) = 3\)
37) \(y' = \frac{3 - x^3}{3y + 8}; \ y(0) = 2\)

Solve the problem.

38) If the marginal price \(\frac{dp}{dx}\) at \(x\) units of demand per week is proportional to the price \(p\), and if at $80 there is no weekly demand \([p(0) = 80]\), and if at $50.18 there is a weekly demand of 8 units \([p(8) = 50.18]\), find the price-demand equation.

39) Find the amount \(A\) in an account (to the nearest dollar) after 5 years if \(\frac{dA}{dt} = rA\), \(A(0) = 800\), and \(A(10) = 1800\).
40) A single injection of a drug is administered to a patient. The amount Q in the body then decreases at a rate proportional to the amount present, and for this particular drug the rate is 3% per hour. Thus, $\frac{dQ}{dt} = -0.03Q$ with $Q(0) = Q_0$, where t is time in hours. If the initial injection is 4 milliliters [$Q(0) = 4$], about how many hours after the drug is given will there be 2 milliliters of the drug remaining in the body? (Round answer to the nearest tenth of an hour.)

41) At the beginning of an advertising campaign for a new product in a city of 500,000 people, no one is aware of the product. After 10 days, 100,000 people are aware of the product. If $N = N(t)$ is the number of people (in thousands) who are aware of the product t days after the beginning of the advertising campaign, solve the following differential equation for $N(t)$:

$$\frac{dN}{dt} = k(500 - N); \quad N(0) = 0; \quad N(10) = 100.$$

42) A computer manufacturer finds that the marginal supply for its new laptop computer satisfies the function

$$S'(p) = \frac{110p}{(27 - p)^2},$$

where S is the quantity purchased when the price is p hundred dollars. Find the supply function $S(p)$ given that the company will sell 730 computers when the price is 18 hundred dollars.

43) The rate of change of the population of a town is given by

$$P'(t) = \frac{2.3t}{t - 6}, \quad t > 10,$$

where P is the population in thousands t years after 1970. Find the function $P(t)$ given that the population in 1999 is 176 thousand.

44) A car manufacturer finds that the marginal supply for its new station wagon satisfies the function

$$S'(p) = \frac{-8600}{p(p - 12)},$$

where S is the quantity purchased in one town when the price is p thousand dollars. Find the supply function $S(p)$ given that the company will sell 640 cars when the price is 25 thousand dollars.
45) The rate of change of the population of a town is given by

\[P'(t) = \frac{1.5t}{t-5}, \quad t > 10, \]

where \(P \) is the population in thousands \(t \) years after 1970. Find the function \(P(t) \) given that the population in 1999 is 135 thousand.

46) A car manufacturer finds that the marginal supply for its new station wagon satisfies the function

\[S'(p) = \frac{-7200}{p(p-12)}, \]

where \(S \) is the quantity purchased in one town when the price is \(p \) thousand dollars. Find the supply function \(S(p) \) given that the company will sell 601 cars when the price is 24 thousand dollars.
Answer Key
Testname: MAC_2233_SUMMER_C_EXAM_4_REVIEW

1) $\frac{19}{2}$
2) $\frac{19}{3}$
3) $\frac{64}{3}$
4) $\frac{512}{5}$
5) 8
6) $\frac{32}{3}$
7) $\frac{1}{6}$
8) 16
9) B
10) $114\frac{1}{3}$
11) 2
12) 90
13) 100
14) 288
15) 4.50
16) 405
17) 0.67
18) CS = $2880
 PS = $1440
19) 2133
20) 13.00
21) 200
22) $p = 47$
 $q = 240$
23) $y = \frac{1}{6} \ln (e^{6x} + C)$
24) $y = \frac{-1}{5 \ln x + C}$
25) $y = (4x^{3/2} + C)^2$
26) $y = C e^{-2/x}$
27) $y = \ln (x^4 + C)$
28) $y = \left(\frac{1}{2} x^3 + C\right)^2 + 1$
29) $y = \frac{-1}{2 \ln x + C}$
30) $y = (6x^{3/2} + C)^2$
31) $y = C e^{-2/x}$
32) $y = \ln (x^5 + C)$
33) $y = \left(\frac{1}{2} x^7 + C\right)^2 + 1$
34) \(y = -2 + 26e^{x^2} \)

35) \(y = -1 + 11e^{(x^2 - 1)/2} \)

36) \(y = \ln(e^x + e^3 - 1) \)

37) \(\frac{3}{2}y^2 + 8y = 3x - \frac{1}{4}x^4 + 22 \)

38) \(p(x) = 80e^{-0.058x} \)

39) \$1200 \)

40) 23.1 hours

41) \(N(t) = 500(1 - e^{-0.022t}) \)

42) \(S(p) = \frac{2970}{27 - p} - 110 \ln |27 - p| + 158 \)

43) \(P(t) = 2.3t + 13.8 \ln (t - 6) + 66 \)

44) \(S(p) = \frac{2150}{3} \ln \left| \frac{p}{p - 12} \right| + 171 \)

45) \(P(t) = 1.5t + 7.5 \ln (t - 5) + 68 \)

46) \(S(p) = 600 \ln \left| \frac{p}{p - 12} \right| + 185 \)