Exam 1 will be on 09/17/10 and covers the following sections: 3.1, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 4.3, 4.5.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Plot the ordered pairs on the rectangular coordinate system provided.

1) A(1, 4), B(-2, 3)

2) A(-1/2, -5), B(-3, 1)

Determine whether the ordered pair is a solution for the equation.

3) (-2, -5); -19x - 2y = 48

4) (4, 4); 3x + y = 16

Graph the equation.

5) y = 2x - 4
6) \(y = -\frac{1}{6}x \)

Find three solutions for the equation.
8) \(y = -7x + 6 \)
9) \(5x + 6y = 90 \)
10) \(y = 5x + 4 \)

Graph the equation.
11) \(y = -1 \)
Find the x- and y- intercepts.

12) $-2.6x + 1.8y = 9$

13) $x = 2$

14) $-x + \frac{1}{4}y = -1$

15) $x = 3$

16) $y = 4x$

17) $y = \frac{3}{4}x - 24$

18) $x - y = -16$

19) $4x - 7y = 11$

20) $y = -7$

21) $x - y = -14$
Graph using the x- and y-intercepts.

22) \(2x - y = 6\)

23) \(x - 2y = 6\)

24) \(3x + 4y = 16\)

Find the slope of the line through the given points.

25) \((2, -7), (2, 1)\)

26) \((1, 2), (4, 2)\)

27) \((-5, -7), (-8, 5)\)
Find the slope of the line going through the given pair of points.

28) \(\left(\frac{1}{2}, \frac{5}{7} \right) \) and \(\left(\frac{5}{6}, \frac{4}{7} \right) \)

29) (3.9, 4.4) and (3.4, 1.9)

Find the slope of the line through the given points.

30) (7, -7), (4, 5)

Determine the slope and the y-intercept. Then graph the equation.

31) \(y = -3x + 7 \)

32) \(3x - 5y = 21 \)

33) \(-5y = -3x - 19 \)
34) \(5x - 2y + 9 = 0\)

35) \(x + y = -3\)

Find the slope of the line and sketch the graph.

36) \(y - 5 = 0\)

Write the equation of the line in slope-intercept form given the slope and the coordinates of the y-intercept.

37) \(m = -\frac{6}{5}, (0, 8)\)
38) \(m = \frac{1}{2}; \) \((0, 4)\)

Write the equation of a line connecting the given points. Write the equation in slope-intercept form.

39) \((-9, 0), (4, -3)\)

40) \((-8, -1), (-5, 4)\)

41) \((-9, 2), (-3, 2)\)

42) \((6, -9), (6, 5)\)

43) \(\left(\frac{1}{5}, \frac{3}{5}\right), \left(-\frac{1}{10}, \frac{1}{10}\right) \)

44) \(\left(-\frac{1}{5}, \frac{2}{5}\right), \left(\frac{1}{5}, \frac{7}{5}\right) \)

45) \((0, 0), (1, -8)\)

Write the equation of a line with the given slope passing through the given point. Write the equation in slope-intercept form.

46) \(m = -\frac{3}{7}; (3, 2)\)

47) \(m = -\frac{3}{8}; (3, 3)\)

48) \(m = \frac{2}{9}; (9, 2)\)

49) \(m = -8; (2, 4)\)

Find an equation in slope-intercept form of the line satisfying the specified conditions.

50) Through \((-7, -8)\), parallel to \(5x + 7y = -63\)

51) Through \((3, -5)\), perpendicular to \(9x - 8y = -13\)

52) Through \((-8, -7)\), perpendicular to \(-5x - 9y = 85\)

53) Through \((6, 2)\), parallel to \(4x - 9y = -57\)

54) Through \((-1, -4)\), parallel to \(y = -\frac{1}{2}x - 9\)

55) Through \((-2, -4)\), perpendicular to \(7x + 6y = -68\)
Solve the problem.

56) A deep sea diving bell is being lowered at a constant rate. After 12 minutes, the bell is at a depth of 600 feet. After 50 minutes the bell is at a depth of 1400 feet. What is the average rate of lowering per minute? Round your answer to the nearest tenth.

57) The cost of manufacturing a molded part is related to the quantity produced during a production run. When 100 parts are produced, the cost is $300. When 300 parts are produced, the cost is $1700. What is the average cost per part?

58) A cross-country skier reaches the 13-km mark of a race 40 min after reaching the 5-km mark. Find the speed (average rate of change) of the skier.

59) In 1980, the population of a city was 6.3 million. By 1992 the population had grown to 8.3 million. Find the average rate of change in population from 1980 to 1992.

60) A deep sea diving bell is being lowered at a constant rate. After 11 minutes, the bell is at a depth of 600 feet. After 55 minutes the bell is at a depth of 1500 feet. What is the average rate of lowering per minute? Round your answer to the nearest tenth.

61) The cost of manufacturing a molded part is related to the quantity produced during a production run. When 100 parts are produced, the cost is $300. When 600 parts are produced, the cost is $2300. What is the average cost per part?

Determine the nature of the system of equations.

62) \[\begin{align*}
3x + 2y &= 34 \\
3x + 6y &= 78
\end{align*} \]

63) \[\begin{align*}
-6x + 3y &= -6 \\
5x + 5y &= 95
\end{align*} \]

64) \[\begin{align*}
3x + 5y &= 66 \\
6x + 10y &= 132
\end{align*} \]

65) \[\begin{align*}
2x - 3y &= -16 \\
8x - 12y &= -64
\end{align*} \]

66) \[\begin{align*}
-4x - y &= -52 \\
-16x - 4y &= -217
\end{align*} \]

Solve the system using substitution.

67) \[\begin{align*}
x &= 30 + 6y \\
9x - 5y &= 25
\end{align*} \]

68) \[\begin{align*}
-5x + 8y &= 36 \\
-2x - 4y &= -36
\end{align*} \]
69) $7x + 28 = 7y$
 \[-3x + 2y = 10\]

70) $3x + 4y = 5$
 $9x = 10 + 12y$

71) $7x - 17 = 5y$
 \[-5x + 2y = -20\]

72) $2x + 3y = 5$
 $6x = 10 + 9y$

Solve the system using elimination.

73) $-x + 3y = -4$
 $-5x - 3y = 14$

74) $x - 5y = -48$
 $-2x - 5y = -39$

75) $x + 9y = -34$
 $9x + 8y = -87$

76) $3x - y = 9$
 $5x + y = 23$

77) $7x - 5y = -35$
 $5x + 2y = 14$

78) $x + y = 6$
 $x - y = 4$

Translate the problem to a system of equations, then solve using substitution.

79) A biologist collected 216 fern and moss samples. There were 84 fewer ferns than moss samples. How many fern samples did the biologist collect?

Solve the problem.

80) The perimeter of a rectangle is 22 cm. The length is 7 cm longer than the width. What are the length and width of the rectangle?

81) Bob fenced in a rectangular garden in his yard. The length of the rectangle is 5 feet longer than the width and the perimeter is 66 feet. What is the width of the rectangle?

Translate the problem to a system of equations, then solve using substitution.

82) At a local university, a difference between a professor’s salary and an associate professor's salary is $249,688. The sum of the salaries is $1,311,560. Find the salary of an associate professor at this university.

Translate the problem to a system of equations, then solve using substitution.

83) A biologist collected 259 fern and moss samples. There were 19 fewer ferns than moss samples. How many fern samples did the biologist collect?
Translate the problem to a system of equations, then solve using substitution.

84) At a local university, a difference between a professor's salary and an associate professor's salary is $149,683. The sum of the salaries is $1,291,559. Find the salary of an associate professor at this university.

85) A biologist collected 158 fern and moss samples. There were 98 fewer ferns than moss samples. How many fern samples did the biologist collect?

86) At a local university, a difference between a professor's salary and an associate professor's salary is $149,691. The sum of the salaries is $1,331,567. Find the salary of an associate professor at this university.
Answer Key
Testname: MAT_1033_FALL_10_MWF_7AM_EXAM_1_REVIEW

1) Yes

2) Yes

3) Yes
4) Yes

5)
6) (0, 6), (5, -29), (6, -36)
7) (0, 15), (18, 0), (12, 5)
8) (1, 9), (2, 14), (3, 19)
12) \[\begin{align*} x & = 0, \quad y = 0 \end{align*} \]

13) \[\begin{align*} x & = 0, \quad y = 0 \end{align*} \]

14) \((1, 0), (0, -4)\)

15) \((3, 0), \text{no y-intercept}\)

16) \((0, 0), (0, 0)\)

17) \((32, 0), (0, -24)\)

18) \((-16, 0), (0, 16)\)

19) \((\frac{11}{4}, 0), (0, -\frac{11}{7})\)

20) No x-intercept, \((0, -7)\)

21) \((-14, 0), (0, 14)\)

22) \[\begin{align*} x & = 0, \quad y = 0 \end{align*} \]
23) undefined
24) undefined
25) Undefined
26) 0
27) -4
28) \(\frac{3}{7}\)
29) 5
30) -4
31) \(m = -3\), y-intercept: (0, 7)
32) \(m = \frac{3}{5} \), y-intercept: \(0, -\frac{21}{5} \)

33) \(m = \frac{3}{5} \), y-intercept: \(0, \frac{19}{5} \)

34) \(m = \frac{5}{2} \), y-intercept: \(0, \frac{9}{2} \)
35) $m = -1$; y-intercept: $(0, -3)$

36) Slope: 0

37) $y = -\frac{6}{5}x + 8$

38) $y = \frac{1}{2}x + 4$

39) $y = -\frac{3}{13}x - \frac{27}{13}$

40) $y = \frac{5}{3}x + \frac{37}{3}$

41) $y = 2$

42) $x = 6$

43) $y = \frac{5}{3}x + \frac{4}{15}$

44) $y = \frac{5}{2}x + \frac{9}{10}$

45) $y = -8x$

46) $y = -\frac{3}{7}x + \frac{23}{7}$

47) $y = -\frac{3}{8}x + \frac{33}{8}$
48) $y = \frac{2}{9}x$

49) $y = -8x + 20$

50) $y = -\frac{5}{7}x - 13$

51) $y = -\frac{8}{9}x - \frac{7}{3}$

52) $y = \frac{9}{5}x + \frac{37}{5}$

53) $y = \frac{4}{9}x - \frac{2}{3}$

54) $y = -\frac{1}{2}x - \frac{9}{2}$

55) $y = \frac{6}{7}x - \frac{16}{7}$

56) 21.1 ft per min

57) 7.00 per part

58) 12 km/hr

59) $\frac{1}{6}$ million per year

60) 20.5 ft per min

61) 4.00 per part

62) Consistent with independent solutions

63) Consistent with independent solutions

64) Consistent with dependent solutions

65) Consistent with dependent solutions

66) Inconsistent with independent solutions

67) (0, -5)

68) (4, 7)

69) (-2, 2)

70) \[
\begin{bmatrix}
25 \\
18
\end{bmatrix}
\]

71) (6, 5)

72) \[
\begin{bmatrix}
25 \\
12
\end{bmatrix}
\]

73) (-4, 2)

74) (-3, 9)

75) (-7, -3)

76) (4, 3)

77) (0, 7)

78) (5, 1)

79) 66 fern samples

80) Length: 9 cm; width: 2 cm

81) 14 feet

82) $530,936$

83) 120 fern samples

84) $570,938$

85) 30 fern samples
Answer Key
Testname: MAT_1033_FALL_10_MWF_7AM_EXAM_1_REVIEW

86) $590,938